Zur Startseite von DrArbeit.de,
der deutschlandweiten Stellenbörse für Diplomarbeiten und Doktorarbeiten


Archiv - Stellenangebot


Dies ist ein Angebot aus der Datenbank von DrArbeit.de

Um die Datenbank komfortabel nach weiteren Angeboten durchsuchen zu können, klicken Sie einfach oben oder hier.

Archiv-Übersicht     Angebot Nr. 13180

Angebotsdatum: 10. Dezember 2018
Art der Stelle: Doktorarbeit
Fachgebiet: Biologie > Biophysik
Titel des Themas: Bacterial mimetic systems for the study of bacterial inactivation and infection

Institut: Max Planck Institute of Colloids and Interfaces
Frau Rumiana Dimova
Science Park Golm
Tel.: +493315679615   Fax.:
Homepage: http://www.dimova.de
E-Mail Kontakt: mail

Beschreibung: The PhD position is in the framework of the International Max Planck Research School on Multiscale Bio-Systems (https://imprs.mpikg.mpg.de).
Project description: Electric-field treatments are abundant in medicine but biotechnology applications are emerging only now (see Trends Biotechnol 33:480, 2015). Bacterial inactivation (e.g. in waste water treatment) and gene transfection, both based on cell electroporation, are just two examples. The Gram-negative bacterial cell wall represents a complex matrix of lipids, proteins and glycans that form a rigid protective layer against the environment. It is also the main access point for antibiotic therapy and bacterial viruses (phages). Major components are lipopolysaccharides (LPSs), which maintain the outer membrane stability (Nature Reviews Microbiology 11:467, 2013). In contrast to eukaryotic membranes, models for the Gram-negative outer membrane are lacking, mainly due to the high aggregation propensity of LPSs (Biophys. J. 100:978, 2011). Aim of the project is therefore the construction of an LPS-containing in vitro model for a Gram-negative outer membrane using giant vesicles (see Figure) and to explore the mechanisms for membrane poration under electric fields. In the Barbirz Lab at Potsdam University (https://tinyurl.com/GlycoBiochemistry), the candidate will use highly purified LPS to prepare vesicles that mimic the Gram-negative cell envelope; bacteriophages specific for the glycan moiety of LPS will then be employed to investigate the properties of these artificial outer membrane systems. Microfluidics-based approaches for the vesicle preparation and manipulation will be explored in collaboration with the Robinson Lab at the Max Planck Institute of Colloids and Interfaces (http://www.mpikg.mpg.de/Biomicrofluidic_Systems). The vesicles will be characterized using fluorescence microscopy and biophysical techniques developed in the Dimova Lab at the Max Planck Institute of Colloids and Interfaces (www.dimova.de). Their response to electric fields will be assessed with ultra-high-speed digital imaging.
Anfangsdatum: 15. August 2018
Geschätzte Dauer: 3 Jahre
Bezahlung: Vertrag
Papers: https://doi.org/10.1016/B978-0-12-396534-9.00001-5


Sonstiges: Applications are submitted via the following website: https://imprs.mpikg.mpg.de/application